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Abstract. Multimodal sentiment analysis is an actively emerging field
of research in deep learning that deals with understanding human senti-
ments based on more than one sensory input. In this paper, we propose
reSenseNet, an ensemble of early fusion architecture of deep CNN and
LSTM for multimodal sentiment analysis of audio, visual, and text data.
ReSenseNet consists of feature extraction, feature fusion, and fully con-
nected layers stacked together as a three-layer architecture. Instances of
the generalized reSenseNet architecture have been experimented on sev-
eral variants of modalities combined together to form different variations
in the test data. Such a combination has produced results in predicting
average arousal and valence up to an F1 score of 50.91% and 35.74%
respectively.

Keywords: Multimodal deep learning · Sentiment Analysis · Feature
Fusion · LSTM · Arousal · Valence · Deep Learning.

1 Introduction

Diagnosis of mental health issues is a big challenge in Human-Computer In-
teraction research. This research is focused this problem and attempts to find
technological solutions towards the same by developing novel multi-modal deep
learning methods for sentiment analysis tasks. It is inspired by the proposition by
World Health Organization (WHO) saying “no health without mental health”,
which clearly mentions the importance of mental health in people’s lives. Ap-
proximately 792 million people worldwide suffered from a mental health disorder,
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according to Hannah Ritchie and Max Roser 4 (2017). It is slightly more than
one in ten people globally, and that number is increasing with time. Researchers
worldwide are trying to develop solutions towards various problems associated
with mental health problems. On the other side, a massive volume of opinionated
data recorded in digital form available for analysis in today’s world.
The authors Soleymani et al. [1] have discussed the various challenges and op-
portunities in the domain of multimodal sentiment analysis. Using sentiment
analysis techniques, it is possible to automate the extraction or classification of
sentiments from opinionated data or reviews. Sentiment analysis techniques can
analyze the reviews and opinions and classify them according to different classes
of sentiment. To quantify the emotions while someone is reviewing, two variables
called arousal and valence can be used. Arousal represents the state of excite-
ment of the speaker, and valence represents the pleasantness of the sentiment.
It helps us in identifying the speaker’s emotions and sentiments. Since a signifi-
cant portion of today’s data is available in multiple modalities, recent research
attempts to combine different modalities where it results in better accuracy.

Fig. 1: Integrated deep learning stack for multi-modal sentiment analysis from
raw video input. Our proposed reSenseNet is a part of this integrated stack

1.1 Research contribution

This work predicts advanced intensity classed of emotional parameters. These pa-
rameters are arousal and valence. The work uses segmented audio-visual-textual
data. An integrated deep learning stack has been developed as shown in Figure
1. The novelty of the proposal lies in the deep CNN and LSTM based Early
fusion architecture. This architecture is called reSenseNet.
4 https://ourworldindata.org/mental-health
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1. ReSenseNet architecture to perform multimodal sentiment analysis on seg-
mented audio-visual-textual data.

2. Empirical experiments are performed on different instances of the archi-
tecture to predict emotional variables arousal and valence have been done.
Performance measuring metric is F1 score.

3. Finally, two instances to predict arousal and valence is proposed. They have
an F1 score of 50.91% and 35.74% respectively across three modalities.

2 State of Art in sentiment analysis

This research motivation is inspired by Kaur et al. [2], who propose a search-
based stacking model that collectively exploits multiple base learners for human-
activity analysis. Further exploration of sentiment analysis methods in context
of deep learning application and multimodal feature fusion have been performed.
Soleymani et al. [1] comprehensively presented “sentiment” and “sentiment anal-
ysis” in context of multimodal sentiment analysis is well summarized. Zhang et
al. in [3] also proposed a brief survey about the application of deep learning
in this context. Morency et al. [4] addresses opinion harvesting from large-scale
multimodal raw data, proof-of-concept from joint model which integrates audio,
visual, textual features to identify sentiments from web resources.

2.1 Deep learning research in Sentiment analysis

Rosas et al. in [5] have applied deep learning techniques to perform sentiment
analysis on Spanish online videos, also have shown that deep multimodal features
provide better accuracy than the singular features. Yadav et al. [6] have reviewed
different deep learning techniques applied in sentiment analysis and solved dif-
ferent difficulties faced during this task. Another application can be seen in [7]
where a deep learning-based framework for the multimodal sentiment analysis
has been proposed, which gets a better result. [7] have also stated that by com-
bining the audio, visual, and text feature, they got 10% improvement. Poria et
al. [8] have proposed a decision level fusion framework used in deep learning
techniques for a multimodal sentiment analysis task with a margin of 10–13%
and 3–5% accuracy on polarity detection and emotion recognition, respectively.

2.2 Multimodal deep learning in sentiment analysis

The Multimodal Sentiment Analysis in Real-life Media Challenge (MuSe) 2020
[9] focused on the task of sentiment recognition, topic engagement, and trust-
worthiness detection. Three sub-challenge named MuSe-Wild, MuSe-Topic, and
MuSe-Trust were proposed for teams to participate. Similarly, the 2nd Multi-
modal Sentiment Analysis Challenge (MuSe 2021) [10] focused on multimodal
sentiment recognition of user-generated content and in stress-induced situations.
This challenge compared multimedia processing and deep learning methods for
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automatic audio-visual, biological, and textual-based sentiment and emotion-
sensing under a standard experimental condition set. Four sub-challenges named
MuSe-Wilder, MuSe-Sent, MuSe-Stress, and MuSe-Physio were proposed under
MuSe 2021 challenge. The data for the challenge was provided by [11], which
was collected from YouTube and manually annotated. Ghosh et al. [12] have
proposed one data acquisition tool5 which can be used to collect multimodal
data for such tasks.
One significant task by Stappen et al. [13] have described about unifying a
wide range of fusion methods and proposed the novel Rater Aligned Annota-
tion Weighting (RAAW), which aligns the annotations in a translation-invariant
way before weighting and fusing them based on the inter-rater agreements be-
tween the annotations. Strappen et al. [14] have also proposed a topic extractor
on video transcripts, which uses neural word embeddings through graph-based
clustering. This research also uses the MuSe-CaR dataset [11].

2.3 Multi-modal feature fusion methods

One primary technological method needed in this research is multimodal fea-
ture fusion methods, which allows us to fuse features across different sources
and modalities into one single feature vector. Our inspiration came from some
of the recent research papers on feature fusion methods. [15] have proposed a
model which starts its task by eliminating the noise interference in textual data
and extracting more essential image features, after which the feature-fusion part
based on attention mechanism learns internal features from the text and images
data through symmetry. The model then applies the fusion features to the senti-
ment classification tasks. Majumder et al. in [16] have proposed a novel feature
fusion strategy, which proceeds hierarchically, first fusing the modalities two in
two and then fusing all three modalities. Zadeh et al. in [17] solve the problem
of multimodal sentiment analysis as an instance of modeling intra-modality and
inter-modality dynamics and propose Tensor Fusion Network, which learns both
such dynamics end-to-end. The proposed approach has been designed to make
it worthwhile for the volatile nature of spoken language in online videos, voice,
and gestures.

3 The ReSenseNet architecture

The reSenseNet architecture for multi-modal feature fusion for sentiment analy-
sis task is a part of a three-layered integrated deep learning stack for multimodal
sentiment analysis. The architecture uses an Early fusion mechanism to fuse var-
ious features across various modalities. ReSenseNet is made of three significant
layers: the feature reduction layer, the Early Fusion Layer, and the Fully con-
nected neural network. The detailed description of the ReSenseNet architecture
is shown in Figure 2.

5 https://intellispeechscis.web.app/
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Fig. 2: A detailed description of a deep-learning stack that integrates reSenseNet
to predict arousal and valence (left). The resenseNet architecture is to the right.
The figure also includes description of the feature reduction workflow and the
feature fusion workflow. The optional layers are denoted in dotted boxes.
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3.1 Feature reduction Layer

The intial layer of the reSenseNet layer is the feature reduction layer. Out of
various methods of feature reduction, two techniques have been considered: con-
secutive convolution layers (followed by a max-pooling layer), and Long-short-
term memory, or LSTM layers.
The model initially performs an 1D convolution on all the modal features. The
intuition behind this is to build reduced feature maps for timestamped data. As
mentioned previously, each audio, video, and text feature matrices are of size
(588, Fs), where the first dimension of the feature vectors represents the times-
tamp dimension (after zero padding). The convolution layers are followed by
1D Max pooling layers along the feature-length. The model applies these layers
repeatedly over the features until it achieves a feature vector of sufficient length.
In the end, the features are flattened to produce a feature vector of length 160
for each feature.
Every instance of the reSenseNet architecture contains the convolution layers.
In some instances of the reSenseNet, the authors have experimented with an ad-
ditional 64-unit LSTM layer, which is applied to the output of the convolution
layer. The output of this LSTM layer is a feature vector of length 64.

3.2 Fusion layer

The fusion layer is the most important portion of the reSenseNet architecture
which performs early fusion on the reduced feature maps. The output of the
feature reduction layer is sent as an input to the Fusion layer. Three different
approaches to performing feature fusion have been proposed. These are simple
concatenation, concatenation with LSTM early fusion and stacking with LSTM
early fusion. Exhaustive experimentation on different types of fusion techniques
have been performed to make architecture level decisions on ReSenseNet.

F
′(2n,1)
k = F

(n,1)
i ||F (n,1)

j (1a)

F
′(n,2)
k = F

(n,1)
i ||F (n,1)

j (1b)

∀FiεF1, F2, . . . Fn

lstmi = LSTM64(f),∀fεF1, F2 . . . Fn (2)

1. In the simple concatenation fusion method, multiple feature vectors are con-
catenated against one another (as shown in equation 1a and feeding it to the
fully connected layer.

2. Concatenation with LSTM early fusion is a technique where certain features
are concatenated (Equation 1a) and then passed through 64-unit LSTM
layer, as shown in as described in Equation 2.
Furthermore, the output of the LSTM layers is again passed to a stacking
sub-layer and then passed into a pooling layer. The output is flattened and
sent into the final fully connected layer.
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3. In the Stacking with LSTM early fusion technique, the first level of feature
fusion is performed by stacking feature pairs (Fi, Fj) on top of one another,
to produce features F ′1, F

′
2, . . . F

′
N , which are of size (L, 2) each. Stacking

is mathematically defined in Equation 1b. Each of these stacked feature
matrices are then passed into N separate 64-unit LSTM layers. The output
of the LSTM layers are passed through a stacking layer and max-pooling
layer after which it is sent to the fully connected.

3.3 Fully connected layer

The final layer of the reSenseNet architecture is where the feature fusion layer’s
output is passed into a fully connected neural network, with one hidden layer
containing 32 hidden units and five output units. Specific details of the fully
connected neural network in the later sections.

4 Dataset and Data preparation

4.1 The dataset and the multi-modal features

The dataset used in this research the MuSe-CaR dataset[11] which is a collection
of 40+ hours of YouTube videos of car reviews. Data annotation of continuous
values like arousal, valence for this dataset have been done by human annotators.
This research uses the pre-extracted features that are provided by the MuSe-
CaR dataset. In the audio features, eGeMAPS [18] and VGGish [19] have been
considered for the experimentation. EGeMAPS and VGGish are feature vectors
of lengths 88 and 128 for a specific timestamp for each audio segment. In the
visual/facial modality, Xception [20] , Facial Action Units and VGGface [21] have
been considered. Xception, FAU, and VGGface have feature vectors of length
2048, 35, and 512, respectively, for each audio segment at a certain timestamp.
For the text modality, BERT [22] feature is used which has a feature vector of
length 768.

In future mentions VGGish will be used as v′f , eGeMaps as eGe , Xception
as X, VGGFace as vf , FAU as auf and BERT as BT

4.2 Data Preprocessing

The data was available to us in the form of raw audio-visual data and pre-
extracted feature vectors. The features that are being used for this study are pre-
extracted from the audio, video, and text data in the MuSe-Car dataset. Each
audiovisual-textual sample from the dataset is divided into smaller segments
of variable length. Each segment is several timestamps long. The valence and
arousal are annotated against each segment, meaning that each segment has one
annotation of valence and arousal. Hence, one unit of data is made of multiple
feature vectors, thus forming a feature matrix. However, these feature matrices
are of variable dimension because of the variable-length segments. Thus, the
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feature matrices are preprocessed to make them uniform length. For all samples
that have segment length lesser than 588, zero paddings have been applied to
the right of the feature matrix, and for those samples whose segment length
is greater than 588, the feature matrix have been truncated . Hence, at the
end of preprocessing, the feature matrix of each segment is of size (588, Lf ),
where Lf is the feature-length. Lf is 35, 4096, 2046, 88, 512, 128, 2048 for
Facial Action Units, DeepSpectrum, BERT, eGeMaps, VGGFace, VGGish and
Xception respectively. All these features were padded and stored in separate h5
files for further usage. The model reads the feature matrices from the disk in
small batches and sends them to the model for training and evaluation. The
preprocessing procedure is described in Algorithm 1.

Algorithm 1 Given a feature matrix file of ith video data, generate the pre-
processed feature matrix

1: procedure preProcess(Fi, featureName)
2: outputFile ← OPEN(featureName.H5)
3: totalSegments ← total number of segments in that feature matrix file.
4: F ′ ← emptymatrixwithshape(totalSegments, 588, LF )
5: for s in range(0, totalSegments) do
6: S ← Fi[s] . |S| = (LS , LF ), where LS is the length of the segment, and Lf

is the feature length.
7: if LS < 588 then
8: S′ ← zeroPadding(S, extraWidth = (588− LS))
9: else if LS > 588 then

10: S′ ← truncate(S) . Making |S′| = (588, LF ) by padding or truncating

11: F ′.append(S′)

12: outputFile.write( F’ )

5 Performance Analysis

5.1 Experimental setup

The models have been trained using the Keras functional API, set for a maximum
of 20 epochs with a batch size of 32. An early stopping mechanism has been set
in place with a patience of 15 epochs, and the metric used in this case is the
training validation F1 score. The model was compiled using Adam optimizer
with Categorical cross-entropy as the loss function. The entire dataset was split
with an 80-20 ratio, with 20 percent of the data (randomly chosen) was used
for validation. The fully connected neural network has one hidden layer of 32
units and an output layer of 5 units (for five levels of arousal/valence). Dropout
layers (with dropout rate = 0.2) and L1 and L2 regularizers have been deployed
to prevent overfitting. L1 and L2 regularization factor is 0.000001 and 0.00001.
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5.2 Evaluation on reSenseNet architecture

The proposed architecture have been used to build models to predict the sen-
timent variables, namely arousal, and valence. And for that purpose, a set of
experiments have been designed, based on which two separate fine-tuned models
have been proposed for each variable. The reSenseNet architecture have been
evaluated with various combinations of modalities and fusion methods, along
with an extensive hyperparameter search. The following set of evaluation exper-
iments have been performed on the reSenseNet architecture

1. Modality search: To study which combination of modalities work best. Vari-
ous combinations of features, keeping the hyperparameters and fusion method
the same, were tested. The symbols A, V and T indicate audio, visual
and text modalities respectively. Only concatenation was used as the fu-
sion method. Learning rate α = 0.001, Dropout frequency = 0.2, Regular-
izer parameter L1 = 10−5 & L2 = 10−6, were kept constant through the
experiments. Given in Table 1.

2. Fusion method search: To study which specific combination of features work
the best. Various fusions of features within the fusion layer were evalu-
ated, keeping the features and hyperparameters the same. Three different
fusion mechanisms (as described early in the paper) have been tested out in
these set of experiments: Concatenation, Concatenation + LSTM, Stacking
+ LSTM. The various combinations of features in the A+V and A+V+T
modality have been tested here. In the Feature column, the brackets indicate
the way stacking/concatenation was performed. Learning rate α = 0.001,
Dropout frequency = 0.2, Regularizer parameter L1 = 10−5 & L2 = 10−6,
were kept constant through the experiments. Given in Table 2

3. An extensive hyper-parameter search against the features and fusion method.
Various hyperparameters for the model have been tested. The experiments
were conducted against the A+V+T modality only because it gave better
results in the past experiments, (Table 1. Two different fused features are
used as model input, which are (eGe + BT ) + (vf + BT ) + (X + BT ) and
(eGe+BT )+(vf +BT )+(eGe+auf )+(X+auf ). The regularizer parameters
have been kept constant, as L1 = 10−5 & L2 = 10−4. Given in Table 3

For evaluation, the entire annotated dataset is split into separate training
and testing sub-dataset. 1641 data samples are used for training and 572 data
samples for testing the models in the experiments as mentioned above. While
splitting the datasets, it is ensured that there is no overlap between the train
and test dataset, meaning that the test dataset is entirely unseen by the model.
This ensures that the results provided by the model are entirely accurate.

5.3 Results and Discussion

The results of the experiment shows that the best results comes out when all the
three modalities (audio, video, and text) are fused to predict the variables. From
Table 1 there could be observed a significant increase in F1 scores in training and
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Table 1: Evaluation table for modality search.

Arousal Valence

Modality Feature Train/Test Train/Test

A v′f 45.21/31.23 20.26/9.14

A eGe 46.32/33.15 22.13/15.23

V auf 46.55/36.71 38.11/16.32

V auf + vf 50.45/44.97 50.00/29.08

T BT 86.82/46.20 85.12/33.92

A+V (auf + vf ) + eGe 50.15/44.93 51.11/29.12

A+V+T auf + eGe + v′f 43.21/28.12 95.21/27.40

A+V+T (vf + auf ) + (eGe + X) + BT 68.08/46.88 62.08/32.12

Table 2: Evaluation table for fusion method search

Arousal Valence

Fusion
method

Modality Feature Train/Test Train/Test

Concatenation

A+V (auf + vf ) + eGe 46.67/42.12 50.00/29.08

A+V+T auf + eGe + v′f 43.21/28.12 45.67/27.40

A+V+T (vf + auf ) + (eGe + X) + BT 68.08/46.88 62.08/32.12

Concatenation
+ LSTM

A+V (auf + vf ) + eGe 50.45/44.97 50.11/29.08

A+V+T auf + eGe + v′f 47.11/32.98 50.67/30.18

A+V+T (vf + auf ) + (eGe + X) + BT 65.18/46.10 65.12/33.21

Stacking +
LSTM with
Early fusion

A+V (auf + vf ) + eGe 50.45/44.97 49.22/29.18

A+V+T auf + eGe + v′f 46.18/42.12 45.12/37.36

A+V+T (vf + auf ) + (eGe + X) + BT 59.18/47.67 52.58/33.11

A+V+T
(eGe + BT ) + (vf + BT ) +

(X + BT )
52.77/50.91 54.78/35.74

A+V+T
(eGe + BT ) + (vf + BT ) +
(eGe + auf ) + (X + auf )

52.77/49.24 54.78/35.88
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Table 3: Evaluation table for hyperparameter searching.

Arousal Valence

Input
fused
feature

Learning
rate

Dropout Train/Test Train/Test

(eGe+BT )+
(vf + BT ) +
(X + BT )

0.001 0.2 52.77/50.91 54.78/35.74

0.002 0.2 52.42/49.11 54.72/35.32

0.001 0.4 53.21/49.21 55.11/35.04

0.002 0.4 53.25/49.56 55.18/34.98

(eGe+BT )+
(vf + BT ) +
(eGe+auf )+
(X + auf )

0.001 0.2 52.77/49.24 54.78/35.74

0.002 0.2 54.42/48.03 54.11/35.14

0.001 0.4 53.98/48.74 53.18/35.01

0.002 0.4 54.18/48.04 54.05/35.23

testing scenarios. For example, from Table 1, it can be seen that using modalities
audio + video, there is jump in test F1 score from 33.15% to 44.97%. It must
also be noticed that the text modality itself is potent for predicting arousal and
valence because it scored an F1 score of 46.20% and 33.92% respectively for test
datasets.
From Table 2 in the fusion method search, the Early fusion Stacking + LSTM
is outperforming all the other methods of feature fusion. In the concatenation
feature, reSenseNet model achieved a highest F1 score of 46.88% and 32.12%
on test dataset, for arousal and valence respectively. In that experiment, feature
fusion has been performed as (auf + vf ) + eGe. Using Concatenation + LSTM
early fusion method, the highest F1 score was obtained as 46.10% and 33.21%
for feature sets as (vf +auf )+(eGe+X)+BT . However, some of the highest F1
scores were achieved by using stacking + LSTM early fusion. In that method,
feature set (eGe+BT ) + (vf +BT ) + (X +BT ) achieved an F1 score of 50.91%
for arousal and feature set (eGe+BT ) + (vf +BT ) + (eGe+ auf ) + (X + auf )
achieved an F1 score of 35.88%, indicating that these feature sets, used with
stacking + LSTM produce the best result.
In Table 3, the best feature sets from the previous experiments have been con-

sidered. These are (eGe + BT ) + (vf + BT ) + (X + BT ) and (eGe + BT ) +
(vf +BT ) + (eGe+ auf ) + (X + auf ) and perform a hyperparameter search for
Dropout frequency and learning rate. The best results came out with learning
rate α = 0.001 and Dropout frequency = 0.2. Hence, considering the best result
from the experiments, a training F1 score of 52.77% and test score of 50.91%
for arousal, and a training F1 score of 54.74% and a test F1 score of 35.88% for
valence have been achieved.
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(a) reSenseNet-Arousal model archi-
tecture

(b) reSenseNet-Valence model archi-
tecture

Fig. 3: reSenseNet-Arousal and Valence model architecture

(a) F1 score training curve for
Arousal

(b) Loss training curve for Arousal

(c) F1 score training curve for Va-
lence

(d) Loss training curve for Valence

Fig. 4: reSenseNet-Arousal and valence training curves
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Table 4: Final table describing results and specifications of ReSenseNet-Arousal
and ReSenseNet-Valence

Arousal Valence

Modality A+V+T A+V+T

Feature maps
(eGe + BT ) + (vf +
BT ) + (X + BT )

(eGe+BT ) + (vf +BT ) +
(eGe + auf ) + (X + auf )

Extraction
method

CNN CNN + LSTM

Dropout
frequency

0.2 0.2

Learning rate 0.001 0.001

Regularziers
L1/L2

10−5 & 10−4 10−5 & 10−4

Train/Test 52.77/50.91 54.78/35.88

Based on the above experiment results, the authors propose that the best
model for predicting arousal is where the reSenseNet architecture uses the (eGe+
BT ) + (vf + BT ) + (X + BT ) feature set with Stacking + LSTM early fusion
method. It uses a 0.2 dropout frequency on the fully connected layer, with reg-
ularizer parameters L1 = 10−5 & L2 = 10−6, and learning rate of 0.001. The
model needs to be trained for 20 epochs (which can early-stopped with patience
of 15 epochs). This model is called reSenseNet-Arousal. Similarly, for predict-
ing valence, the usage of feature map (eGe + BT ) + (vf + BT ) + (X + BT )
and (eGe + BT ) + (vf + BT ) + (eGe + auf ) + (X + auf ) with Stacking +
LSTM early fusion, with a dropout frequency = 0.2, regularizer parameters
L1 = 10−5 & L2 = 10−6 andlearning rate = 0.001 is suggested. The model is
trained for maximum of 20 epochs with early stopping mechanism in place, for
15 epoch patience. This model is called reSenseNet-Valence. The structure of the
models are given in and the structure is visualized in Figure 3, and the training
curves for F1 score and loss are given in Figure 4. The details of the models are
documented in Table 4. As it can be seen, the test F1 score for valence never
reaches the same level as arousal, indicating that predicting valence in this case
might be difficult. The authors assume that this might be due to nature of the
dataset MuSe-Car, where the YouTubers (subject of the video dataset) maintain
a certain level of valence (or pleasantness of voice) for their own audience. Also,
the videos are about car reviews, where it is not expected to have a very big
difference in valence. However, there are other datasets to train the models to
predict valence in a better way.



14 Shankhanil G. and Chhanda S. et al.

6 Final discussion

In this paper, the authors have proposed the reSenseNet architecture, which
is a novel deep learning based architecture for predicting emotional parame-
ters (arousal and valence) in an sentiment analysis task across various modal-
ities. Extensive tests are performed on the architecture and finally proposed 2
models based on the reSenseNet architecture, namely reSenseNet-Arousal and
reSenseNet-Valence for predicting arousal and valence respectively. These models
have scored an F1 score of 50.91% and 35.74% on test datasets.
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